Quantum Circuits for GCD Computation with $O(n \log n)$ Depth and O(n) Ancillae
نویسندگان
چکیده
GCD computations and variants of the Euclidean algorithm enjoy broad uses in both classical and quantum algorithms. In this paper, we propose quantum circuits for GCD computation with O(n log n) depth with O(n) ancillae. Prior circuit construction needs O(n) running time with O(n) ancillae. The proposed construction is based on the binary GCD algorithm and it benefits from log-depth circuits for 1-bit shift, comparison/subtraction, and managing ancillae. The worst-case gate count remains O(n), as in traditional circuits.
منابع مشابه
Power of Uninitialized Qubits in Shallow Quantum Circuits
We study the computational power of shallow quantum circuits with n input qubits, one output qubit, and two types of ancillary qubits: O(log n) initialized and O(poly(n)) uninitialized qubits. The initial state of the uninitialized ancillary qubits is arbitrary, and we have to return their state into the initial one at the end of the computation. First, to show the strengths of such circuits, w...
متن کاملA quantum circuit to find discrete logarithms on ordinary binary elliptic curves in depth O(log^2n)
Improving over an earlier construction by Kaye and Zalka [1], in [2] Maslov et al. describe an implementation of Shor’s algorithm, which can solve the discrete logarithm problem on ordinary binary elliptic curves in quadratic depth O(n). In this paper we show that discrete logarithms on such curves can be found with a quantum circuit of depth O(log n). As technical tools we introduce quantum ci...
متن کاملFast parallel circuits for the quantum Fourier transform
We give new bounds on the circuit complexity of the quantum Fourier transform (QFT). We give an upper bound of O(log n + log log(1/ε)) on the circuit depth for computing an approximation of the QFT with respect to the modulus 2n with error bounded by ε. Thus, even for exponentially small error, our circuits have depth O(log n). The best previous depth bound was O(n), even for approximations wit...
متن کاملProbabilistic Parallel Prefix Computation
Given inputs ~1,. . . , z,,, which are independent identically distributed random variables over a domain D, and an associative operation o, the probabilistic prej?x computation problem is to compute the product ~1 o x2 o . . . o xn and its n 1 prefixes. Instances of this problem are finite state transductions on random inputs, the addition or subtraction of two random n-bit binary numbers, and...
متن کاملDepth-Efficient Threshold Circuits for Multiplication and Symmetric Function Computation
The multiplication operation and the computation of symmetric functions are fundamental problems in arithmetic and algebraic computation. We describe unit-weight threshold circuits to perform the multiplication of two n-bit integers, which have fan-in k, edge complexity O(n 2+1=d), and depth O(log d + log n= log k), for any xed integer d > 0. For a given fan-in, our constructions have considera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.7516 شماره
صفحات -
تاریخ انتشار 2013